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Advanced?
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Ruby!
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Where I Come From

Ruby

FORTRAN
C

Modula 2
C++
Eiffel
Java

Lisp
FORTH

TCL
Perl
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A Real Programmer can 
write FORTRAN code 

in any language!
Java
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Thinking
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Thinking
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Ruby Class Design:
What to Expect
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Three Examples of
(more or less)

Real Life Ruby Classes
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Interesting and/or Fun
(at least to me)
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Illustrate Techniques
that are not typically used

by the Java/C++/Eiffel Crowd
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Box 1
Master of Disguise
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Rake::FileList
 RUBY_FILES = FileList[‘lib/**/*.rb’]

• Initialized with GLOB

• Specialized to_s

• Extra Methods (ext, pathmap, etc)

• Lazy Evaluation

FileList is like an Array, except:
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First Cut

 class FileList < Array
   ...
 end
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Lazy Loading

  def initialize(pattern)
    super
    @pattern = pattern
    @resolved = false
  end
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Lazy Loading
  def resolve
    self.clear
    Dir[@pattern].each do |arg|
      self << arg
    end
    @resolved = true
  end
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This Will Not Work!

    fl = FileList.new("*.c")

    assert_equal 'c.c', fl[0]
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Need to Resolve!

    fl = FileList.new("*.c")
    fl.resolve
    assert_equal 'c.c', fl[0]

Major Pain
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Auto Resolve

  def [](index)
    resolve unless @resolved
    super
  end

Yuck ... A lot of methods need resolving
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Wash, Rinse, Repeat ...

def [](index) ... end
def size      ... end
def empty?    ... end
def +(other)  ... end

A lot of methods need AutoResolve!
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So, Everything is Good.

Right?
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This is OK

fl = FileList.new(“*.rb”) # picks up a.rb

new_list = fl + [“main.rb”]

new_list ==> [“a.rb”, “main.rb”]

No problem, FileList#+ is a resolving method
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But this is a Small Problem

fl = FileList.new(“*.rb”) # picks up a.rb

new_list = [“main.rb”] + fl

new_list ==> [“main.rb”]

Oops ...  Array#+ does not resolve its arguments

So the new list has the WRONG result
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Why?
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Because

• The Ruby implementation of Array#+ thinks 
its argument is an Array.

• After all, it is (it is a subclass of Array)

• So the Array contents are used directly, 
rather than being resolved.
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If only ...

... there was a way for an arbitrary object to 
indicate that it wished to be treated as an Array.
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to_ary
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Change this ...

class FileList < Array
  def initialize(pattern=nil)
    super
    @pattern = pattern
    @resolved = false
  end
  ...
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... to this

class FileList
  def initialize(pattern=nil)
    @items = []
    @pattern = pattern
    @resolved = false
  end
  ...
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Change resolving from this ...

  def [](index)
    resolve unless @resolved
    super
  end
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... to this

  def [](index)
    resolve unless @resolved
    @items[index]
  end
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But this is a Small Problem

fl = FileList.new(“*.rb”) # picks up a.rb

new_list = [“main.rb”] + fl

new_list ==> [“main.rb”, “a.rb”]

Now ... Everything is Good
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Remember?

def [](index) ... end
def size      ... end
def empty?    ... end
def +(other)  ... end

A lot of methods need AutoResolve!
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Time to DRY
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... to this

  RESOLVING_METHODS.each do |method|
    class_eval %{
      def #{method}(*args, &block)
        resolve unless @resolved
        @items.#{method)(*args, &block)
      end
    }
  end

RESOLVING_METHODS = 
   [:[], :size, :empty?, +:, ...]
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What have we 
learned?
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When trying to mimic a class ...

it might be better to use 
to_ary / to_str 

rather than inheritance.



Copyright 2007 by Jim Weirich

Box 2
The Art of Doing Nothing
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Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
  xml.name("Jim")
  xml.phone_number("555-1234")
}
puts xml.target!
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Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
  xml.name("Jim")
  xml.phone_number("555-1234")
}
puts xml.target!

<student>
  <name>Jim</name>
  <phone_number>555-1234</phone_number>
</student>
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Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
  xml.name("Jim")
  xml.phone_number("555-1234")
}
puts xml.target!

<student>
  <name>Jim</name>
  <phone_number>555-1234</phone_number>
</student>

Depends on method_missing to construct tags.
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Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
  xml.name("Jim")
  xml.phone_number("555-1234")
  xml.class("Intro to Ruby")
}
puts xml.target!
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Builder::XmlMarkup

demo.rb:28:in `class': wrong number of 
arguments (1 for 0) (ArgumentError)
 from demo.rb:28
 from demo.rb:12:in `method_missing'
 from demo.rb:25

xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
  xml.name("Jim")
  xml.phone_number("555-1234")
  xml.class("Intro to Ruby")
}
puts xml.target!
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The class method 
is predefined
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How to Inherit from Object
Without inheriting from Object

?
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Rather than Inherit from 
Object

class XmlBuilder
  def method_missing(sym, *args, &block)
    ...
  end
end
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Inherit from BlankSlate

class XmlBuilder < BlankSlate
  def method_missing(sym, *args, &block)
    ...
  end
end
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Blank Slate
class BlankSlate
  instance_methods.each do |name|
    undef_method name
  end
end

demo.rb:7: warning: undefining `__id__' may cause serious problem
demo.rb:7: warning: undefining `__send__' may cause serious problem
<student>
  <name>Jim</name>
  <phone_number>555-1234</phone_number>
  <class>Intro to Ruby</class>
</student>
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Blank Slate
class BlankSlate
  instance_methods.each do |name|
    undef_method name unless name =~ /^__/
  end
end

<student>
  <name>Jim</name>
  <phone_number>555-1234</phone_number>
  <class>Intro to Ruby</class>
</student>
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Good Enough?
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Open Classes

require ‘blank_slate’

module Kernel
  def name
    “My Name”
  end
end
...
xml.name(“Jim”)

demo.rb:36:in `name': wrong number of arguments (1 for 0) 
(ArgumentError)
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First ... a Slight Rewrite

class BlankSlate
  def self.hide(method)
    undef_method method
  end
  instance_methods.each do |name|
    hide(name) unless name =~ /^__/
  end
end



Copyright 2007 by Jim Weirich

Catch New Methods
module Kernel
  class << self
    alias_method :original_method_added,
      :method_added

    def method_added(name)
      result = original_method_added(name)
      BlankSlate.hide(name) if self == Kernel
      result
    end
  end
end

Need Similar code for Object



Copyright 2007 by Jim Weirich

Good Enough Now?
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Not Quite
require ‘blank_slate’

module Name
  def name
    “My Name”
  end
end

class Object
  include Name
end
...
xml.name(“jim”)

demo.rb:36:in `name': wrong number of arguments (1 for 0) 
(ArgumentError)
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Solution

• Details are left to the student

• Hint: Use append_features

• (instead of method_added)

• Bigger Hint: Look at BlankSlate in Builder
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Box 3
Parsing without Parsing
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Consider
 User.find(:all, 
   :conditions => 
      [“name = ?”, “jim”])
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Consider
 User.find(:all, 
   :conditions => 
      [“name = ?”, “jim”])

 user_list.select { |user|
   user.name = “jim”
 }

VS
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Wouldn’t it be nice if ...

we could use select on ActiveRecord models.
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Like This

 User.select { |user|
   user.name == “jim”
 }
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Naive Implementation

class User
  def self.select(&block)
    find(:all).select(&block)
  end
end
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What’s Wrong?

• Incredibly inefficient

• Large tables will kill you

• Doesn’t take advantage of the database

• Did I mention it was inefficient?
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Magic Implementation
class User
  def self.select(&block)
    cond = 
      translate_block_to_sql(&block)
    find(:all, :conditions => cond)
  end
end
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Magic Implementation
class User
  def self.select(&block)
    cond = 
      translate_block_to_sql(&block)
    find(:all, :conditions => cond)
  end
end
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How to Implement Magic?

(I)   Parse the Source File

(II)  ...

(III) ...
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Parsing ... Ick!
expr  : command_call
  | expr kAND expr
      {
   $$ = logop(NODE_AND, $1, $3);
      }
  | expr kOR expr
      {
   $$ = logop(NODE_OR, $1, $3);
      }
  | kNOT expr
      {
   $$ = NEW_NOT(cond($2));
      }
  | '!' command_call
      {
   $$ = NEW_NOT(cond($2));
      }
  | arg
  ;

expr_value : expr
      {
   value_expr($$);
   $$ = $1;
      }
  ;

command_call : command
  | block_command
  | kRETURN call_args
      {
   $$ = NEW_RETURN(ret_args($2));
      }
  | kBREAK call_args
      {
   $$ = NEW_BREAK(ret_args($2));
      }
  | kNEXT call_args
      {
   $$ = NEW_NEXT(ret_args($2));
      }
  ;
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How to Implement Magic?

(I)   Parse the Source File

(II)  Use Parse Tree

(III) ...
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ParseTree ... 
Excellent Idea!

See Ambition for more details

http://errtheblog.com/post/10722
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How to Implement Magic?

(I)   Parse the Source File

(II)  Use Parse Tree

(III) Just Execute the Code
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Table Node
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Table Node
class TableNode < Node
  def initialize(table_name)
    @table_name = table_name
  end

  def method_missing(sym, *args, &block)
    MethodNode.new(self, sym)
  end

  def to_s
    @table_name
  end
end
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Method Node
class MethodNode < Node
  def initialize(obj, method)
    @obj = obj
    @method = method
  end

  def to_s
    "#{@obj}.#{@method}"
  end
end



Copyright 2007 by Jim Weirich

How do we handle ...

 User.select { |user|
   user.name == “jim”
 }
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Node

class Node
  def ==(other)
    BinaryOpNode.new("=", self, other)
  end
end
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BinaryOpNode
class BinaryOpNode < Node
  def initialize(operator, left, right)
    @operator = operator
    @left = left
    @right = right
  end

  def to_s
    "(#{@left} #{@operator} #{@right})"
  end
end
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What Works So Far ...
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Where are the Quotes?
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Some New Nodes

class StringNode
  def initialize(string)
    @string = string
  end
  def to_s
    "'#{@string}'"
  end
end

class LiteralNode
  def initialize(obj)
    @obj = obj
  end
  def to_s
    @obj.to_s
  end
end
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We need a way to find 
the right node type for 

any object ...
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Case Statement?

def wrap_in_node(obj)
  case obj
  when String
    StringNode.new(obj)
  else
    LiteralNode.new(obj)
  end
end
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Don’t You Love 
Open Classes

class String
  def as_a_sql_node
    StringNode.new(self)
  end
end

class Object
  def as_a_sql_node
    LiteralNode.new(self)
  end
end
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Some Tweeks to Node
class Node
  def ==(other)
    BinaryOpNode.new("=", 
      self, other.as_a_sql_node)
  end
  def as_a_sql_node
    self
  end
end
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Some Tweeks to Node
class Node
  def ==(other)
    BinaryOpNode.new("=", 
      self, other.as_a_sql_node)
  end
  def as_a_sql_node
    self
  end
end
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Quotes Look Good!
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What’s Left To Do?
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Other Operators
class Node
  def ==(other) ... end
  def <(other)  ... end
  def <=(other) ... end
  def +(other)  ... end
  def -(other)  ... end
  def *(other)  ... end
  def /(other)  ... end
  ...
end
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Writing select

 class User
   def self.select(&block)
     cond = block.call(
       TableNode.new(self.table_name))
     find(:all, :conditions => cond)
   end
 end
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Problems
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Minor Problem
• Most operators are commutative

User.select { |user|
  user.name == “jim”
}
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Minor Problem

• Literals on the left side might cause problems

User.select { |user|
  “jim” == user.name
}

• coerce can handle numeric operators.
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Bigger Problem

• && and || can not be overridden in Ruby

• They have short-circuit semantics

• Cannot be implemented in a method

• Perhaps use & and | instead

• but that breaks the paradigm we were 
striving for
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Bigger Problem

• ! and != have predefined semantics in Ruby

• You cannot change their meaning

• You cannot override them
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Prior Art

• The GLORP Smalltalk library provided 
inspirations for the dynamic parsing ideas.

• The Ruby “Criteria” library by Ryan Pavlik 
implemented many of these ideas.
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Summary
What did we learn?
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Programming Languages 
really do shape the way 

we solve problems.
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Learn the corners of 
your language of choice 
to take full advantage 
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Don’t be afraid to think 
outside the box of past 

experience...
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After all, if someone 
hadn’t thought outside 
the box 3 years ago ...
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I would still be 
programming 

in this:
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Thank You
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License
This presentation is made available under the Creative 
Commons Attribution/Non-Commercial License, version 
2.0. This means you are able to copy, distribute, display, and 
perform the work and to create derivitive works, under 
the following conditions:

• You must give the original author credit.
• You may not use this work for commercial purposes.

(see http://creativecommons.org/licenses/by-nc/2.0/ for 
details)


