
Copyright 2007 by Jim Weirich

Advanced
Ruby Class

Design
Jim Weirich

Chief Scientist

Copyright 2007 by Jim Weirich

Advanced?

Copyright 2007 by Jim Weirich

Ruby!

Copyright 2007 by Jim Weirich

Where I Come From

Ruby

FORTRAN
C

Modula 2
C++
Eiffel
Java

Lisp
FORTH

TCL
Perl

Copyright 2007 by Jim Weirich

A Real Programmer can
write FORTRAN code

in any language!
Java

Copyright 2007 by Jim Weirich

Thinking

Copyright 2007 by Jim Weirich

Thinking

Copyright 2007 by Jim Weirich

Ruby Class Design:
What to Expect

Copyright 2007 by Jim Weirich

Three Examples of
(more or less)

Real Life Ruby Classes

Copyright 2007 by Jim Weirich

Interesting and/or Fun
(at least to me)

Copyright 2007 by Jim Weirich

Illustrate Techniques
that are not typically used

by the Java/C++/Eiffel Crowd

Copyright 2007 by Jim Weirich

Box 1
Master of Disguise

Copyright 2007 by Jim Weirich

Rake::FileList
 RUBY_FILES = FileList[‘lib/**/*.rb’]

• Initialized with GLOB

• Specialized to_s

• Extra Methods (ext, pathmap, etc)

• Lazy Evaluation

FileList is like an Array, except:

Copyright 2007 by Jim Weirich

First Cut

 class FileList < Array
 ...
 end

Copyright 2007 by Jim Weirich

Lazy Loading

 def initialize(pattern)
 super
 @pattern = pattern
 @resolved = false
 end

Copyright 2007 by Jim Weirich

Lazy Loading
 def resolve
 self.clear
 Dir[@pattern].each do |arg|
 self << arg
 end
 @resolved = true
 end

Copyright 2007 by Jim Weirich

This Will Not Work!

 fl = FileList.new("*.c")

 assert_equal 'c.c', fl[0]

Copyright 2007 by Jim Weirich

Need to Resolve!

 fl = FileList.new("*.c")
 fl.resolve
 assert_equal 'c.c', fl[0]

Major Pain

Copyright 2007 by Jim Weirich

Auto Resolve

 def [](index)
 resolve unless @resolved
 super
 end

Yuck ... A lot of methods need resolving

Copyright 2007 by Jim Weirich

Wash, Rinse, Repeat ...

def [](index) ... end
def size ... end
def empty? ... end
def +(other) ... end

A lot of methods need AutoResolve!

Copyright 2007 by Jim Weirich

So, Everything is Good.

Right?

Copyright 2007 by Jim Weirich

This is OK

fl = FileList.new(“*.rb”) # picks up a.rb

new_list = fl + [“main.rb”]

new_list ==> [“a.rb”, “main.rb”]

No problem, FileList#+ is a resolving method

Copyright 2007 by Jim Weirich

But this is a Small Problem

fl = FileList.new(“*.rb”) # picks up a.rb

new_list = [“main.rb”] + fl

new_list ==> [“main.rb”]

Oops ... Array#+ does not resolve its arguments

So the new list has the WRONG result

Copyright 2007 by Jim Weirich

Why?

Copyright 2007 by Jim Weirich

Because

• The Ruby implementation of Array#+ thinks
its argument is an Array.

• After all, it is (it is a subclass of Array)

• So the Array contents are used directly,
rather than being resolved.

Copyright 2007 by Jim Weirich

If only ...

... there was a way for an arbitrary object to
indicate that it wished to be treated as an Array.

Copyright 2007 by Jim Weirich

to_ary

Copyright 2007 by Jim Weirich

Change this ...

class FileList < Array
 def initialize(pattern=nil)
 super
 @pattern = pattern
 @resolved = false
 end
 ...

Copyright 2007 by Jim Weirich

... to this

class FileList
 def initialize(pattern=nil)
 @items = []
 @pattern = pattern
 @resolved = false
 end
 ...

Copyright 2007 by Jim Weirich

Change resolving from this ...

 def [](index)
 resolve unless @resolved
 super
 end

Copyright 2007 by Jim Weirich

... to this

 def [](index)
 resolve unless @resolved
 @items[index]
 end

Copyright 2007 by Jim Weirich

But this is a Small Problem

fl = FileList.new(“*.rb”) # picks up a.rb

new_list = [“main.rb”] + fl

new_list ==> [“main.rb”, “a.rb”]

Now ... Everything is Good

Copyright 2007 by Jim Weirich

Remember?

def [](index) ... end
def size ... end
def empty? ... end
def +(other) ... end

A lot of methods need AutoResolve!

Copyright 2007 by Jim Weirich

Time to DRY

Copyright 2007 by Jim Weirich

... to this

 RESOLVING_METHODS.each do |method|
 class_eval %{
 def #{method}(*args, &block)
 resolve unless @resolved
 @items.#{method)(*args, &block)
 end
 }
 end

RESOLVING_METHODS =
 [:[], :size, :empty?, +:, ...]

Copyright 2007 by Jim Weirich

What have we
learned?

Copyright 2007 by Jim Weirich

When trying to mimic a class ...

it might be better to use
to_ary / to_str

rather than inheritance.

Copyright 2007 by Jim Weirich

Box 2
The Art of Doing Nothing

Copyright 2007 by Jim Weirich

Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
 xml.name("Jim")
 xml.phone_number("555-1234")
}
puts xml.target!

Copyright 2007 by Jim Weirich

Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
 xml.name("Jim")
 xml.phone_number("555-1234")
}
puts xml.target!

<student>
 <name>Jim</name>
 <phone_number>555-1234</phone_number>
</student>

Copyright 2007 by Jim Weirich

Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
 xml.name("Jim")
 xml.phone_number("555-1234")
}
puts xml.target!

<student>
 <name>Jim</name>
 <phone_number>555-1234</phone_number>
</student>

Depends on method_missing to construct tags.

Copyright 2007 by Jim Weirich

Builder::XmlMarkup
xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
 xml.name("Jim")
 xml.phone_number("555-1234")
 xml.class("Intro to Ruby")
}
puts xml.target!

Copyright 2007 by Jim Weirich

Builder::XmlMarkup

demo.rb:28:in `class': wrong number of
arguments (1 for 0) (ArgumentError)
 from demo.rb:28
 from demo.rb:12:in `method_missing'
 from demo.rb:25

xml = Builder::XmlMarkup.new(:indent => 2)
xml.student {
 xml.name("Jim")
 xml.phone_number("555-1234")
 xml.class("Intro to Ruby")
}
puts xml.target!

Copyright 2007 by Jim Weirich

The class method
is predefined

Copyright 2007 by Jim Weirich

How to Inherit from Object
Without inheriting from Object

?

Copyright 2007 by Jim Weirich

Rather than Inherit from
Object

class XmlBuilder
 def method_missing(sym, *args, &block)
 ...
 end
end

Copyright 2007 by Jim Weirich

Inherit from BlankSlate

class XmlBuilder < BlankSlate
 def method_missing(sym, *args, &block)
 ...
 end
end

Copyright 2007 by Jim Weirich

Blank Slate
class BlankSlate
 instance_methods.each do |name|
 undef_method name
 end
end

demo.rb:7: warning: undefining `__id__' may cause serious problem
demo.rb:7: warning: undefining `__send__' may cause serious problem
<student>
 <name>Jim</name>
 <phone_number>555-1234</phone_number>
 <class>Intro to Ruby</class>
</student>

Copyright 2007 by Jim Weirich

Blank Slate
class BlankSlate
 instance_methods.each do |name|
 undef_method name unless name =~ /^__/
 end
end

<student>
 <name>Jim</name>
 <phone_number>555-1234</phone_number>
 <class>Intro to Ruby</class>
</student>

Copyright 2007 by Jim Weirich

Good Enough?

Copyright 2007 by Jim Weirich

Open Classes

require ‘blank_slate’

module Kernel
 def name
 “My Name”
 end
end
...
xml.name(“Jim”)

demo.rb:36:in `name': wrong number of arguments (1 for 0)
(ArgumentError)

Copyright 2007 by Jim Weirich

First ... a Slight Rewrite

class BlankSlate
 def self.hide(method)
 undef_method method
 end
 instance_methods.each do |name|
 hide(name) unless name =~ /^__/
 end
end

Copyright 2007 by Jim Weirich

Catch New Methods
module Kernel
 class << self
 alias_method :original_method_added,
 :method_added

 def method_added(name)
 result = original_method_added(name)
 BlankSlate.hide(name) if self == Kernel
 result
 end
 end
end

Need Similar code for Object

Copyright 2007 by Jim Weirich

Good Enough Now?

Copyright 2007 by Jim Weirich

Not Quite
require ‘blank_slate’

module Name
 def name
 “My Name”
 end
end

class Object
 include Name
end
...
xml.name(“jim”)

demo.rb:36:in `name': wrong number of arguments (1 for 0)
(ArgumentError)

Copyright 2007 by Jim Weirich

Solution

• Details are left to the student

• Hint: Use append_features

• (instead of method_added)

• Bigger Hint: Look at BlankSlate in Builder

Copyright 2007 by Jim Weirich

Box 3
Parsing without Parsing

Copyright 2007 by Jim Weirich

Consider
 User.find(:all,
 :conditions =>
 [“name = ?”, “jim”])

Copyright 2007 by Jim Weirich

Consider
 User.find(:all,
 :conditions =>
 [“name = ?”, “jim”])

 user_list.select { |user|
 user.name = “jim”
 }

VS

Copyright 2007 by Jim Weirich

Wouldn’t it be nice if ...

we could use select on ActiveRecord models.

Copyright 2007 by Jim Weirich

Like This

 User.select { |user|
 user.name == “jim”
 }

Copyright 2007 by Jim Weirich

Naive Implementation

class User
 def self.select(&block)
 find(:all).select(&block)
 end
end

Copyright 2007 by Jim Weirich

What’s Wrong?

• Incredibly inefficient

• Large tables will kill you

• Doesn’t take advantage of the database

• Did I mention it was inefficient?

Copyright 2007 by Jim Weirich

Magic Implementation
class User
 def self.select(&block)
 cond =
 translate_block_to_sql(&block)
 find(:all, :conditions => cond)
 end
end

Copyright 2007 by Jim Weirich

Magic Implementation
class User
 def self.select(&block)
 cond =
 translate_block_to_sql(&block)
 find(:all, :conditions => cond)
 end
end

Copyright 2007 by Jim Weirich

How to Implement Magic?

(I) Parse the Source File

(II) ...

(III) ...

Copyright 2007 by Jim Weirich

Parsing ... Ick!
expr : command_call
 | expr kAND expr
 {
 $$ = logop(NODE_AND, $1, $3);
 }
 | expr kOR expr
 {
 $$ = logop(NODE_OR, $1, $3);
 }
 | kNOT expr
 {
 $$ = NEW_NOT(cond($2));
 }
 | '!' command_call
 {
 $$ = NEW_NOT(cond($2));
 }
 | arg
 ;

expr_value : expr
 {
 value_expr($$);
 $$ = $1;
 }
 ;

command_call : command
 | block_command
 | kRETURN call_args
 {
 $$ = NEW_RETURN(ret_args($2));
 }
 | kBREAK call_args
 {
 $$ = NEW_BREAK(ret_args($2));
 }
 | kNEXT call_args
 {
 $$ = NEW_NEXT(ret_args($2));
 }
 ;

Copyright 2007 by Jim Weirich

How to Implement Magic?

(I) Parse the Source File

(II) Use Parse Tree

(III) ...

Copyright 2007 by Jim Weirich

ParseTree ...
Excellent Idea!

See Ambition for more details

http://errtheblog.com/post/10722

Copyright 2007 by Jim Weirich

How to Implement Magic?

(I) Parse the Source File

(II) Use Parse Tree

(III) Just Execute the Code

Copyright 2007 by Jim Weirich

Table Node

Copyright 2007 by Jim Weirich

Table Node
class TableNode < Node
 def initialize(table_name)
 @table_name = table_name
 end

 def method_missing(sym, *args, &block)
 MethodNode.new(self, sym)
 end

 def to_s
 @table_name
 end
end

Copyright 2007 by Jim Weirich

Method Node
class MethodNode < Node
 def initialize(obj, method)
 @obj = obj
 @method = method
 end

 def to_s
 "#{@obj}.#{@method}"
 end
end

Copyright 2007 by Jim Weirich

How do we handle ...

 User.select { |user|
 user.name == “jim”
 }

Copyright 2007 by Jim Weirich

Node

class Node
 def ==(other)
 BinaryOpNode.new("=", self, other)
 end
end

Copyright 2007 by Jim Weirich

BinaryOpNode
class BinaryOpNode < Node
 def initialize(operator, left, right)
 @operator = operator
 @left = left
 @right = right
 end

 def to_s
 "(#{@left} #{@operator} #{@right})"
 end
end

Copyright 2007 by Jim Weirich

What Works So Far ...

Copyright 2007 by Jim Weirich

Where are the Quotes?

Copyright 2007 by Jim Weirich

Some New Nodes

class StringNode
 def initialize(string)
 @string = string
 end
 def to_s
 "'#{@string}'"
 end
end

class LiteralNode
 def initialize(obj)
 @obj = obj
 end
 def to_s
 @obj.to_s
 end
end

Copyright 2007 by Jim Weirich

We need a way to find
the right node type for

any object ...

Copyright 2007 by Jim Weirich

Case Statement?

def wrap_in_node(obj)
 case obj
 when String
 StringNode.new(obj)
 else
 LiteralNode.new(obj)
 end
end

Copyright 2007 by Jim Weirich

Don’t You Love
Open Classes

class String
 def as_a_sql_node
 StringNode.new(self)
 end
end

class Object
 def as_a_sql_node
 LiteralNode.new(self)
 end
end

Copyright 2007 by Jim Weirich

Some Tweeks to Node
class Node
 def ==(other)
 BinaryOpNode.new("=",
 self, other.as_a_sql_node)
 end
 def as_a_sql_node
 self
 end
end

Copyright 2007 by Jim Weirich

Some Tweeks to Node
class Node
 def ==(other)
 BinaryOpNode.new("=",
 self, other.as_a_sql_node)
 end
 def as_a_sql_node
 self
 end
end

Copyright 2007 by Jim Weirich

Quotes Look Good!

Copyright 2007 by Jim Weirich

What’s Left To Do?

Copyright 2007 by Jim Weirich

Other Operators
class Node
 def ==(other) ... end
 def <(other) ... end
 def <=(other) ... end
 def +(other) ... end
 def -(other) ... end
 def *(other) ... end
 def /(other) ... end
 ...
end

Copyright 2007 by Jim Weirich

Writing select

 class User
 def self.select(&block)
 cond = block.call(
 TableNode.new(self.table_name))
 find(:all, :conditions => cond)
 end
 end

Copyright 2007 by Jim Weirich

Problems

Copyright 2007 by Jim Weirich

Minor Problem
• Most operators are commutative

User.select { |user|
 user.name == “jim”
}

Copyright 2007 by Jim Weirich

Minor Problem

• Literals on the left side might cause problems

User.select { |user|
 “jim” == user.name
}

• coerce can handle numeric operators.

Copyright 2007 by Jim Weirich

Bigger Problem

• && and || can not be overridden in Ruby

• They have short-circuit semantics

• Cannot be implemented in a method

• Perhaps use & and | instead

• but that breaks the paradigm we were
striving for

Copyright 2007 by Jim Weirich

Bigger Problem

• ! and != have predefined semantics in Ruby

• You cannot change their meaning

• You cannot override them

Copyright 2007 by Jim Weirich

Prior Art

• The GLORP Smalltalk library provided
inspirations for the dynamic parsing ideas.

• The Ruby “Criteria” library by Ryan Pavlik
implemented many of these ideas.

Copyright 2007 by Jim Weirich

Summary
What did we learn?

Copyright 2007 by Jim Weirich

Programming Languages
really do shape the way

we solve problems.

Copyright 2007 by Jim Weirich

Learn the corners of
your language of choice
to take full advantage

Copyright 2007 by Jim Weirich

Don’t be afraid to think
outside the box of past

experience...

Copyright 2007 by Jim Weirich

After all, if someone
hadn’t thought outside
the box 3 years ago ...

Copyright 2007 by Jim Weirich

I would still be
programming

in this:

Copyright 2007 by Jim Weirich

Thank You

Copyright 2007 by Jim Weirich

License
This presentation is made available under the Creative
Commons Attribution/Non-Commercial License, version
2.0. This means you are able to copy, distribute, display, and
perform the work and to create derivitive works, under
the following conditions:

• You must give the original author credit.
• You may not use this work for commercial purposes.

(see http://creativecommons.org/licenses/by-nc/2.0/ for
details)

